

UG10244

EXPI-OS08A20 Camera Module on FRDM-IMX Series Boards

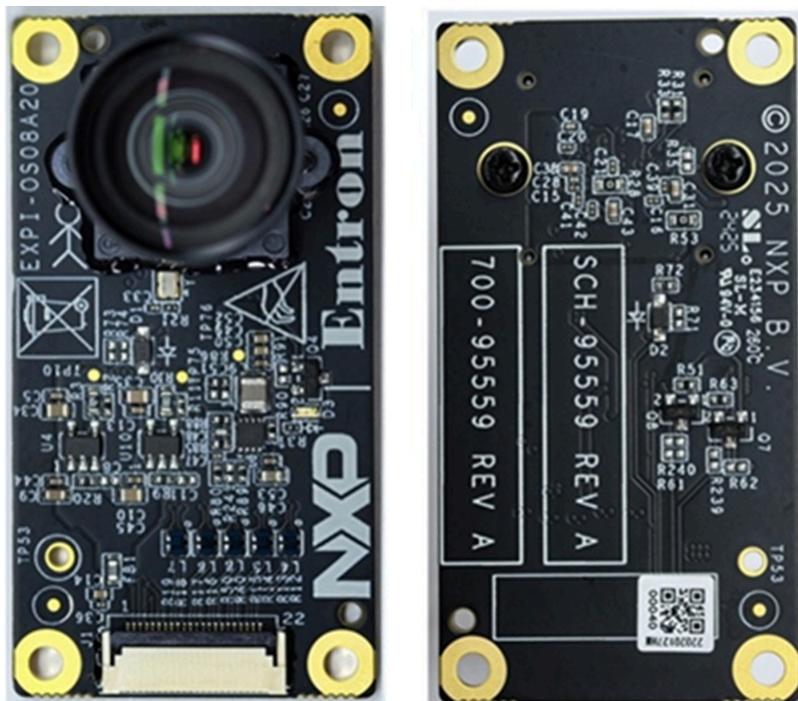
Rev. 1.1 — 8 October 2025

User guide

Document information

Information	Content
Keywords	UG10244, OS08A20 sensor, i.MX 8M Plus Image Signal Processor (ISP), FRDM-IMX8MPLUS board
Abstract	This document describes the procedures for using the OS08A20 sensor with FRDM-IMX series boards, including steps for building the NXP kernel and related files, and enabling the ISP and camera module.

1 Introduction


This document describes the steps for using the EXPI-OS08A20 camera module on the i.MX 8M Plus ISP module. It describes the steps for building the NXP kernel and related files, and enabling the ISP and camera module on the FRDM-IMX series boards.

2 EXPI-OS08A20 camera module and board

This section describes the EXPI-OS08A20 camera module and its hardware parameters.

2.1 EXPI-OS08A20 camera module

[Figure 1](#) shows the top and bottom view of the EXPI-OS08A20 camera module.

Figure 1. EXPI-OS08A20 camera module

The OS08A20 sensor supports image sizes of 4K, 2K, 1080p, and 720p. The output format is 12-bit/10-bit RAW RGB. The sensor has two-exposure staggered HDR and it supports the frame start input.

Features of the ISP on OS08A20 sensor are as follows:

- ISP supports dual OS08A20 modules
- ISP supports three ISP output formats:
 - YUV422
 - NV16
 - NV12
- ISP supports four sensor modes:
 - 1920 × 1080 10-bit linear mode
 - 1920 × 1080 10-bit HDR mode
 - 3840 × 2160 12-bit linear mode
 - 3840 × 2160 10-bit HDR mode

2.2 Block diagram

Figure 2 shows the EXPI-OS08A20 camera module block diagram.

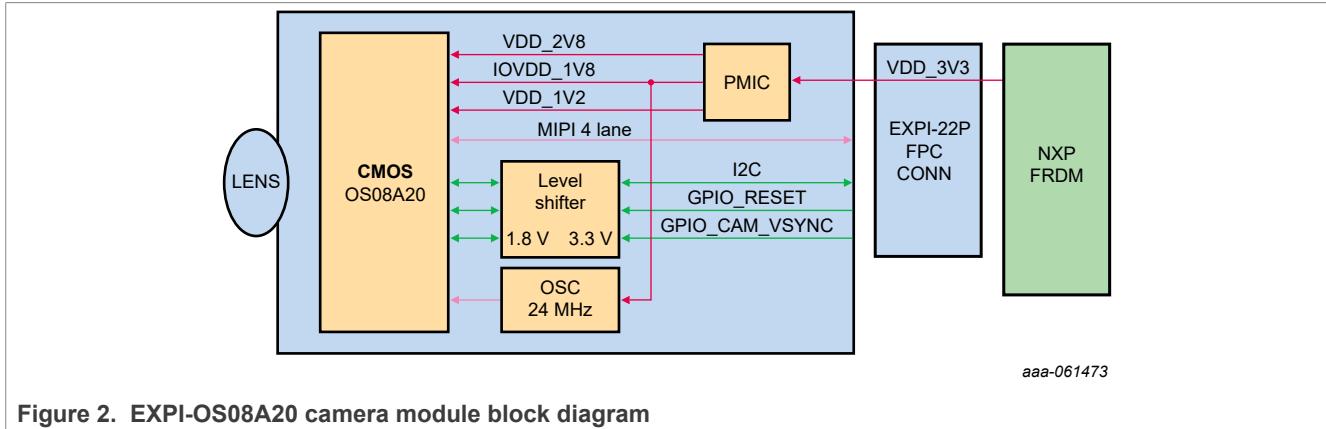


Figure 2. EXPI-OS08A20 camera module block diagram

2.3 Board features

Table 1 lists the features of the EXPI-OS08A20 camera module.

Table 1. EXPI-OS08A20 camera module features

Board feature	Target processor feature used	Description
FPC interface	-	-
Power	3.3 V	The module is powered by 3.3 V from the motherboard
I2C	I2C	<ul style="list-style-type: none"> The motherboard configures the camera module through the I2C interface. The onboard level shifter matches the I2C signal levels on both sides.
MIPI CSI	MIPI CSI	<ul style="list-style-type: none"> Compliant with MIPI CSI-2 specification v1.2. Equipped with four MIPI CSI data lanes and one clock lane.
H_RST_B	GPIO	Reset signal for the camera module
H_VSYNC	GPIO	Vertical sync signal for the camera module

2.4 Lens features

Table 2 shows the depth of field (DOF) measurements, for the YT-3560-H1 camera lens with OS08A20 sensor at various object distances.

Note: The row highlighted shows the factory default setting. The object distance is 2.20 m with DOF ranging from 1.257 m to 8.802 m (total DOF is 7.545 m).

Table 2. YT-3560-H1 with OS08A20 depth of field

Object distance (m)	DOF far-limit (m)	DOF near-limit (m)	DOF length (m)
50.00	∞	2.76	∞

Table 2. YT-3560-H1 with OS08A20 depth of field...continued

Object distance (m)	DOF far-limit (m)	DOF near-limit (m)	DOF length (m)
40.00	∞	2.73	∞
30.00	∞	2.67	∞
20.00	∞	2.55	∞
10.00	∞	2.26	∞
9.00	∞	2.21	∞
8.00	∞	2.14	∞
7.00	∞	2.06	∞
6.00	∞	1.968	∞
5.00	∞	1.847	∞
4.00	∞	1.691	∞
3.00	∞	1.483	∞
2.50	16.959	1.349	15.609
2.40	13.217	1.320	11.897
2.30	10.660	1.289	9.371
2.20	8.802	1.257	7.545
2.10	7.391	1.224	6.167
2.00	6.283	1.189	5.094
1.90	5.391	1.153	4.237
1.80	4.655	1.116	3.540
1.70	4.040	1.077	2.963
1.60	3.517	1.036	2.481
1.50	3.066	0.993	2.074
1.40	2.675	0.948	1.727
1.30	2.332	0.901	1.431
1.20	2.028	0.852	1.176
1.10	1.758	0.801	0.957
1.00	1.515	0.746	0.769
0.90	1.296	0.689	0.607
0.80	1.098	0.629	0.469
0.70	0.918	0.566	0.352
0.60	0.753	0.499	0.254
0.50	0.602	0.428	0.174
0.40	0.462	0.352	0.110
0.30	0.334	0.273	0.061
0.20	0.214	0.188	0.027
0.10	0.103	0.097	0.006

Table 2. YT-3560-H1 with OS08A20 depth of field...continued

Object distance (m)	DOF far-limit (m)	DOF near-limit (m)	DOF length (m)
0.00	0.000	0.000	0.000

2.5 Functional parameters

[Table 3](#) lists the parameters of the EXPI-OS08A20 camera module.

Table 3. EXPI-OS08A20 camera module parameters

Hardware specification		
Image sensor	Part Number	OS08A20-H92A-IC
	Type	Rolling Shutter RGB Bayer Sensor
	Manufacturer	Omnivision
	Output pixels	4K (3840 × 2160 2 μ m × 2 μ m)
	I2C	0 × 6C(W)/0 × 6D(R)
	Max frame rate	4K at 60 FPS
	Max S/N ratio	39 dB
	Dynamic range	74 dB at 16× gain
	Temperature	-30 °C to + 85 °C
LENS	FOV (adaptive OS08A20)	HFOV = 74 °C ± 3 °C VFOV = 45 °C ± 3 °C DFOV = 82 °C ± 3 °C
	Aperture	F2.4 ± 5 %
	Construction	8 Glass + 1 IR
	Focusing range	1.32 m - 13.22 m (at 2.4 m)
	TV distortion	< - 1.4 %

2.6 Connectors

The camera module contains a 22-pin FPC connector (J1) to interface with other boards.

Note: The FRDM-IMX8MPLUS board provides two MIPI CSI connectors (J13 and J14), allowing connection of up to two EXPI-OS08A20 camera modules.

2.7 LEDs

The camera module contains one light-emitting diode (LED). [Table 4](#) describes the usage of the LED.

Table 4. EXPI-OS08A20 camera module LED

Part identifier	LED color	LED name	Description (when LED in ON)
D3	Green	Power LED	Indicates that the VCC_3V3 power supply is available. Note: VCC_3V3 is supplied to the EXPI-OS08A20 camera module through the 22-pin FPC cable.

2.8 Power supply

The EXPI-OS08A20 camera module receives the VCC_3V3 supply when connected via one or more MIPI CSI connectors to an FRDM-IMX series board.

One DC buck switching regulator and two low dropout regulators are used:

- The onboard Step-Down DC-DC (U8) converts the VCC_3V3 power supply to VDD_1V2 supply.
- The onboard LDO (U4) converts the VCC_3V3 power supply to VDD_2V8 supply.
- The onboard LDO (U10) converts the VCC_3V3 power supply to IOVDD_1V8 supply.

[Table 5](#) describes different power sources available on the board.

Table 5. EXPI-OS08A20 camera module power sources

Part identifier	Manufacturing part number and manufacturer	Power supply	Description
U4	RT9053AGB	VDD_2V8	Supplies power to: • OS08A20 sensor (U2)
U10	RT9053AGB	IOVDD_1V8	Supplies power to: • OS08A20 sensor (U2) • 24 MHz crystal oscillator (Y1)
U8	MAX20071ATAA	VDD_1V2	Supplies power to: • OS08A20 sensor (U2) • Controls N-channel MOSFET NX3008NBK (Q4)

2.9 Clock

The EXPI-OS08A20 camera module has one crystal oscillator (Y1) that generates the CAM_MCLK clock (24 MHz) for the OS08A20 sensor.

2.10 22-pin FPC/FFC interface

The EXPI-OS08A20 camera module features a 22-pin FPC/FFC connector (J1), which can be interfaced with the FRDM board. The connector's pinout aligns with the 22-pin MIPI-CSI camera connector standard.

[Table 6](#) provides pinout detail.

Table 6. 22-pin FPC/FFC interface definition

Pin number	Net name	Description
1	VDD_3V3	3.3 V power input/output
2	MIPI_CSI_I2C_SDA_3V3	I2C SDA signal
3	MIPI_CSI_I2C_SCL_3V3	I2C SCL signal
4	GND	Ground
5	H_VSYNC	Vertical sync signal for the camera module
6	H_RST_B	Reset signal for the camera module
7	GND	Ground

Table 6. 22-pin FPC/FFC interface definition...continued

Pin number	Net name	Description
8	MIPI_CSI_DATA3_P	MIPI serial data, lane 3, differential P
9	MIPI_CSI_DATA3_N	MIPI serial data, lane 3, differential N
10	GND	Ground
11	MIPI_CSI_DATA2_P	MIPI serial data, lane 2, differential P
12	MIPI_CSI_DATA2_N	MIPI serial data, lane 2, differential N
13	GND	Ground
14	MIPI_CSI_CLK_P	MIPI serial clock differential P
15	MIPI_CSI_CLK_N	MIPI serial clock differential N
16	GND	Ground
17	MIPI_CSI_DATA1_P	MIPI serial data, lane 1, differential P
18	MIPI_CSI_DATA1_N	MIPI serial data, lane 1, differential N
19	GND	Ground
20	MIPI_CSI_DATA0_P	MIPI serial data, lane 0, differential P
21	MIPI_CSI_DATA0_N	MIPI serial data, lane 0, differential N
22	GND	Ground

Note: For more information about the EXPI-OS08A20 sensor module, refer to www.nxp.com/EXPI-OS08A20.

3 Hardware setup

This section describes how a connection can be established between with the EXPI-OS08A20 camera module and FRDM-IMX series boards.

3.1 FRDM-IMX8MPLUS board

To set up the hardware connection between the EXPI-OS08A20 camera module and FRDM-IMX8MPLUS board, see [Section 3.1.1 "Boot mode and boot device configuration"](#) and [Section 3.1.2 "Connect EXPI-OS08A20 camera module and FRDM-IMX8MPLUS board"](#).

[Figure 3](#) shows the FRDM-IMX8MPLUS board.

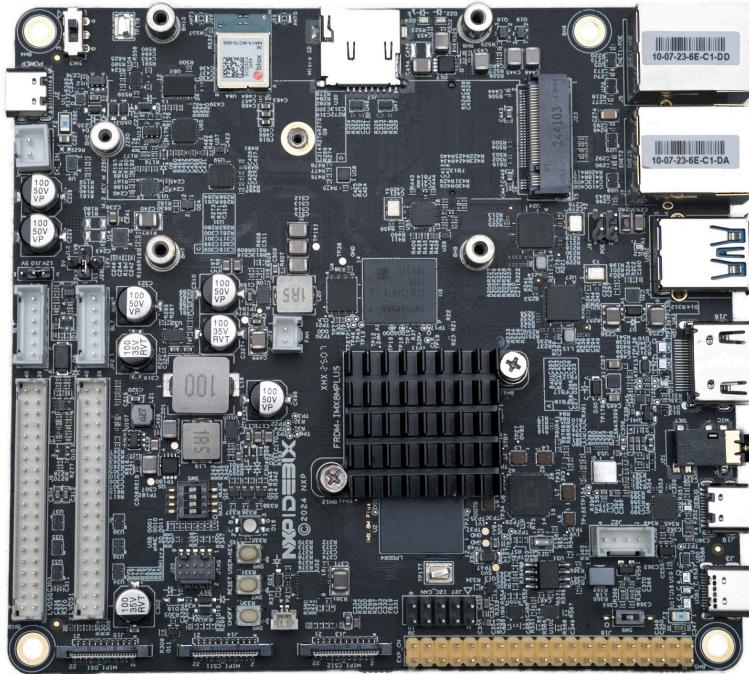


Figure 3. FRDM-IMX8MPLUS board

Note: For more information about the FRDM-IMX8MPLUS board, refer to [FRDM-IMX8MPLUS](#).

3.1.1 Boot mode and boot device configuration

The i.MX 8M Plus processor offers multiple boot configurations, selectable by SW5 on the FRDM-IMX8MPLUS board. In addition, the i.MX 8MP can download a program image from a USB connection when configured in serial download mode. The four dedicated boot mode pins are used to select the various boot modes.

[Table 7](#) describes the SW5 values used in different boot modes.

Table 7. SW5 boot mode settings

SW5[1:4]	BOOT_MODE[3:0]	Boot core	Boot device
0001	0001	Cortex-A	Serial downloader (USB)
0010	0010		uSDHC1 8-bit eMMC 5.1
0011	0011		uSDHC2 4-bit SD 3.0

On the FRDM-IMX8MPLUS board, the default boot mode is an eMMC device. The other boot device is the microSD connector.

- To choose uSDHC1 (eMMC) as the boot device, set SW5[1:4] as "0010".
- To choose uSDHC2 (SD), set SW5[1:4] as "0011".
- To enter the USB serial download, set SW5[1:4] as "0001".

3.1.2 Connect EXPI-OS08A20 camera module and FRDM-IMX8MPLUS board

This sensor is designed for maximum flexibility in hardware and software development. The FPC connector can be connected on both top and bottom sides for compatibility with different usages. For FPC cables, the following two types are available:

- Same-side contacts
- Opposite-side contacts

To ensure that the power supply is not reversed, check the [schematic and PCB layout](#) before connecting the FPC cable.

[Figure 4](#) illustrates the connection between the EXPI-OS08A20 camera module and the FRDM-IMX8MPLUS board using a same-side contacts FPC cable.

Note: Pin 22 on the camera module's FPC connector connects to Pin 1 of the FRDM-IMX8MPLUS board FPC connector (J14).

Figure 4. Single sensor connector setup

4 Software setup

This section describes how to set up the software for the EXPI-OS08A20 camera module.

4.1 Set up OS08A20 sensor on FRDM-IMX8MPLUS board

To set up the OS08A20 sensor, follow the steps below:

1. [Section 4.1.1 "Download a prebuilt image"](#)
2. [Section 4.1.2 "Update prebuilt image to FRDM-IMX8MPLUS board"](#)

3. [Section 4.1.3 "Running EXPI-OS08A20 camera module on FRDM-IMX8MPLUS board"](#)

4.1.1 Download a prebuilt image

The latest prebuilt images for the FRDM-IMX8MPLUS board are available on the [FRDM-IMX8MP Demo Images](#).

An SD card image file (with the *.wic or *.wic.zst) contains a partitioned image (with U-Boot, kernel, rootfs, and so on) suitable for booting the corresponding hardware.

4.1.2 Update prebuilt image to FRDM-IMX8MPLUS board

The method used to update the image varies depending on the boot source. The official UUU tool or third-party software can be used, depending on system requirements and preferences.

[Table 8](#) outlines the differences in capabilities between these options.

Table 8. Flash tool compatibility

Boot sources/Flash tools	UUU	Third-party flash tool
eMMC	Support	No
SD	Support	Support

The following steps explain how to boot from eMMC and SD card using the official UUU tool with a prebuilt image. For other methods, refer *i.MX FRDM Software User Guide* (document [UG10195](#)).

1. Download UUU version 1.2.39 or higher from <https://github.com/nxp-imx/mfgtools/releases>.
2. Connect a USB cable from a computer to the board USB OTG/Type C port for downloading.
On FRDM-IMX8MPLUS, the USB OTG port is labeled 'USB1_C'. To enable debug message output, connect a USB cable from the USB Type-C connector labeled 'DEBUG' to your host computer.
3. Set the boot pin to Serial download mode.

[Table 9](#) shows the boot switch settings for FRDM-IMX8MPLUS to enter Serial download mode.

Table 9. Set up download mode for FRDM-IMX8MPLUS

Switch Name	D1	D2	D3	D4
SW5	0	0	0	1

4. Burn the image:

- To update prebuilt image to SD card, run the following command:

```
uuu -b sd_all imx-boot-imx8mpfrdm.bin imx-image-full-imx8mpfrdm.rootfs.wic
```

- To update prebuilt image to eMMC, run the following command:

```
uuu -b emmc_all imx-boot-imx8mpfrdm.bin imx-image-full-imx8mpfrdm.rootfs.wic
```

5. To boot the board, change the boot switch to eMMC/SD boot mode and reset the board.

Table 10. Set up SD Boot mode for FRDM-IMX8MPLUS

Switch name	D1	D2	D3	D4
SW5	0	0	1	1

Table 11. Set up eMMC Boot mode for FRDM-IMX8MPLUS

Switch name	D1	D2	D3	D4
SW5	0	0	1	0

4.1.3 Running EXPI-OS08A20 camera module on FRDM-IMX8MPLUS board

This section explains how to configure the device tree, set sensor modes, and run the EXPI-OS08A20 camera module for the EXPI-OS08A20 camera module on the FRDM-IMX8MPLUS board.

1. To select a device tree, perform the following steps:

- imx8mp-frdm-os08a20.dtb: Single OS08A20 sensor connected to CSI-1.
- imx8mp-frdm-dual-os08a20.dtb: Dual OS08A20 connected to CSI-1 and CSI-2.

```
u-boot=> setenv fdtfile imx8mp-frdm-os08a20.dtb
u-boot=> saveenv
Saving Environment to MMC... Writing to MMC (2)... OK
u-boot=> boot
```

2. Check that the subdev and video nodes are correct:

```
root@imx8mpfrdm:~# ls /dev
... v4l-subdev0      ...      video3
... v4l-subdev1      ...
... v4l-subdev2      .
... v4l-subdev3

root@imx8mpfrdm:~# cat /sys/class/video4linux/video3/name
viv_v4l20
```

3. Select Sensor mode. Modify the mode parameter after `run.sh -c`, with one of parameters in [Table 12](#)/[Table 13](#) in branch `$NR_DEVICE_TREE_OS08A20` in `start_isp.sh`.

Save modification and restart ISP service or reboot the board for mode changing.

```
root@imx8mpfrdm:~# cd /opt/imx8-isp/bin/
root@imx8mpfrdm:/opt/imx8-isp/bin# vi start_isp.sh
root@imx8mpfrdm:/opt/imx8-isp/bin# systemctl restart imx8-isp.service
```

Table 12. Start_isp.sh mode parameters of single sensor table

Mode	Parameter	Data format
1080p_linear	OS08A20_1080p60	RAW10
1080p_hdr0	OS08A20_1080p30hdr	RAW10
4K_linear	OS08A20_4K	RAW12
4K_hdr	OS08A20_4Khdr	RAW10

```

# check if the os08a20 device has been enabled in the device tree
elif [ $NR_DEVICE_TREE_OS08A20 -eq 1 ]; then
    echo "Starting isp_media_server for Single os08a20"
    cd $RUNTIME_DIR
    if [ $NR_DEVICE_TREE_OV5640 -eq 0 ]; then
        # Default configuration for Os08a20: Os08a20_4k
        # Available configurations: Os08a20_4k, Os08a20_1080p60, Os08a20
        exec ./run.sh -c os08a20_4k -lm
    elif [ $NR_DEVICE_TREE_OV5640 -eq 1 ]; then
        # Default configuration for Os08a20: Os08a20_1080p60
        # Available configurations: Os08a20_1080p60, Os08a20_1080p30hd
        exec ./run.sh -c os08a20_1080p60 -lm
    fi

```

Figure 5. Single sensor parameters in start_isp.sh

Table 13. Start_isp.sh mode parameters of dual sensor table

Mode	Parameter	Data format
Dual 1080p_linear	dual_OS08A20_1080p60	RAW10
Dual 1080p_hdr0	dual_OS08A20_1080p30hd	RAW10

```

elif [ $NR_DEVICE_TREE_OS08A20 -eq 2 ]; then
    echo "Starting isp_media_server for Dual os08a20"
    cd $RUNTIME_DIR
    # Default configuration for Os08a20: dual_Os08a20_1080p60
    # Available configurations: dual_Os08a20_1080p60, dual_Os08a20_1080p30hd
    exec ./run.sh -c dual_os08a20_1080p60 -lm

```

Figure 6. Dual sensor parameters in start_isp.sh

4. Run a sensor module test case:

- Single sensor:

- Mode 0: 1080p linear

```
$ gst-launch-1.0 -v v4l2src device=/dev/video3 ! "video/
xraw,format=YUY2,width=1920,height=1080" ! queue ! waylandsink
```

- Mode 1: 1080p HDR

```
$ gst-launch-1.0 -v v4l2src device=/dev/video3 ! "video/
xraw,format=YUY2,width=1920,height=1080" ! queue ! waylandsink
```

- Mode 2: 4K linear

```
$ gst-launch-1.0 -v v4l2src device=/dev/video3 ! "video/
xraw,format=YUY2,width=3840,height=2160" ! queue ! waylandsink
```

- Mode 3: 4K HDR

```
$ gst-launch-1.0 -v v4l2src device=/dev/video3 ! "video/
xraw,format=YUY2,width=3840,height=2160" ! queue ! waylandsink
```

- Dual sensor:

- Mode 0: Dual 1080p linear

```
$ gst-launch-1.0 -v v4l2src device=/dev/video3 ! "video/
xraw,format=YUY2,width=1920,height=1080" ! queue ! waylandsink window-
width=640
window-height=480 --no-position &
```

```
$ gst-launch-1.0 -v v4l2src device=/dev/video4 ! "video/
xraw,format=YUY2,width=1920,height=1080" ! queue ! waylandsink window-
width=640
window-height=480 --no-position &
```

– Mode 1: Dual 1080p HDR

```
$ gst-launch-1.0 -v v4l2src device=/dev/video3 ! "video/
xraw,format=YUY2,width=1920,height=1080" ! queue ! waylandsink window-
width=640
window-height=480 --no-position &
$ gst-launch-1.0 -v v4l2src device=/dev/video4 ! "video/
xraw,format=YUY2,width=1920,height=1080" ! queue ! waylandsink window-
width=640
window-height=480 --no-position &
```

5. Tune xml files at /opt/imx8-ispl/bin of EXPI-OS08A20 camera module.

Table 14. Tuning files of module

XML file	Description
OS08A20_8M_10_1080P_linear.xml	1080p linear tuning parameters
OS08A20_8M_10_1080P_hdr.xml	1080p HDR tuning parameters
OS08A20_8M_10_4K_linear.xml	4K linear tuning parameters
OS08A20_8M_10_4K_hdr.xml	4K HDR tuning parameters

6. Dewarp configure files at /opt/imx8-ispl/bin/dewarp_config of EXPI-OS08A20 module.

Table 15. Dewarp configure files of module

Dewarp configure files	Description
sensor_dwe_os08a20_1080P_config.json	Dewarp configure in 1080p resolution.
sensor_dwe_bypass_1080P_config.json	Dewarp bypass in 1080p resolution.
sensor_dwe_os08a20_4K_config.json	Dewarp configure in 4K resolution.
sensor_dwe_bypass_4K_config.json	Dewarp bypass in 4K resolution.

5 Acronyms

[Table 16](#) lists the acronyms used in this document.

Table 16. Acronyms

Term	Description
CSI	Camera Serial Interface
DOF	Depth of Field
DFOV	Diagonal Field of View
DTB	Device Tree Blob
eMMC	Embedded Multimedia Card
FFC	Flexible Flat Cable
FOV	Field of View

Table 16. Acronyms...continued

Term	Description
FPC	Flexible Printed Circuit
GPIO	General-Purpose Input/Output
HDR	High Dynamic Range
HFOV	Horizontal Field of View
I2C	Inter-Integrated Circuit
ISP	Image Signal Processor
LDO	Low Dropout Regulator
LED	Light-Emitting Diode
MIPI	Mobile Industry Processor Interface
OTG	On-The-Go
PMIC	Power Management Integrated Circuit
SD	Secure Digital
USB	Universal Serial Bus
uSDHC	Ultra Secure Digital Host Controller
UUU	Universal Update Utility
VFOV	Vertical Field of View

6 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7 Revision history

[Table 17](#) summarizes the revisions to this document.

Table 17. Revision history

Document ID	Release date	Description
UG10244 v.1.1	08 October 2025	<ul style="list-style-type: none">• Updated web link for EXPI-OS08A20 sensor module in Section 2.10 "22-pin FPC/FFC interface"• Updated Section 5 "Acronyms"• Updated Figure 2
UG10244 v.1.0	17 September 2025	Initial public release

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <https://www.nxp.com/profile/terms>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

Contents

1	Introduction	2
2	EXPI-OS08A20 camera module and	
	board	2
2.1	EXPI-OS08A20 camera module	2
2.2	Block diagram	3
2.3	Board features	3
2.4	Lens features	3
2.5	Functional parameters	5
2.6	Connectors	5
2.7	LEDs	5
2.8	Power supply	6
2.9	Clock	6
2.10	22-pin FPC/FFC interface	6
3	Hardware setup	7
3.1	FRDM-IMX8MPLUS board	7
3.1.1	Boot mode and boot device configuration	8
3.1.2	Connect EXPI-OS08A20 camera module and FRDM-IMX8MPLUS board	8
4	Software setup	9
4.1	Set up OS08A20 sensor on FRDM- IMX8MPLUS board	9
4.1.1	Download a prebuilt image	10
4.1.2	Update prebuilt image to FRDM- IMX8MPLUS board	10
4.1.3	Running EXPI-OS08A20 camera module on FRDM-IMX8MPLUS board	11
5	Acronyms	13
6	Note about the source code in the document	14
7	Revision history	14
	Legal information	16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.